Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation
نویسندگان
چکیده
This work presents reduced models for pricing basket options with the Black-Scholes and the Heston model. Basket options lead to multi-dimensional partial differential equations (PDEs) that quickly become computationally infeasible to discretize on full tensor grids. We therefore rely on sparse grid discretizations of the PDEs, which allow us to cope with the curse of dimensionality to some extent. We then derive reduced models with proper orthogonal decomposition. Our numerical results with the Black-Scholes model show that sufficiently accurate results are achieved while gaining speedups between 80 and 160 compared to the high-fidelity sparse grid model for 2-, 3-, and 4-asset options. For the Heston model, results are presented for a single-asset option that leads to a two-dimensional pricing problem, where we achieve significant speedups with our model reduction approach based on high-fidelity sparse grid models.
منابع مشابه
Numerical Solution of Fractional Black Scholes Equation Based on Radial Basis Functions Method
Options pricing have an important role in risk control and risk management. Pricing discussion requires modelling process, solving methods and implementing the model by real data in a given market. In this paper we show a model for underlying asset based on fractional stochastic models which is a particular type of behavior of stochastic assets changing. In addition a numerical method based on ...
متن کاملNumerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
متن کاملNumerical Methods for Pricing Multi - Asset Options
Numerical Methods for Pricing Multi-Asset Options Yuwei Chen Master of Science Graduate Department of Computer Science University of Toronto 2017 We consider the pricing of two-asset European and American options by numerical Partial Differential Equation (PDE) methods, and compare the results with certain analytical formulae. Two cases of options are tested: exchange option and spread option. ...
متن کاملPricing European Multi-asset Options Using a Space-time Adaptive FD-method
In this paper we present an adaptive technique to solve the multidimensional Black-Scholes equation. The number of grid-points required for a given tolerance of the local discretization errors is reduced substantially when compared to a standard equidistant grid. Using our adaptive methods in space and time we have control of the local discretization errors and can refine the grid where needed ...
متن کاملA new approach to using the cubic B-spline functions to solve the Black-Scholes equation
Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 41 شماره
صفحات -
تاریخ انتشار 2015